Student no.:

Part I: choose the most correct answer

1. Which of the lines on the figure below is the best representation of the relationship between the volume and the number of moles of a gas, measured at constant temperature and pressure?
(1 point each)

A) $a \quad$ B) b C) $c \quad$ D) $d \quad$ E) e
2. A sample container of carbon monoxide occupies a volume of 635 mL at a pressure of 822 torr and a temperature of $22^{\circ} \mathrm{C}$. What would its temperature be if the volume was changed to 322 mL at a pressure of 644 torr?
A) 96 K
B) 194 K
C) 322 K
D) 295 K
E) 486 K
3. A sample of butane gas, has a volume of 28.3 L at $22^{\circ} \mathrm{C}$ and 823 torr. What is its volume at STP?
A) 25.2 L
B) 28.4 L
C) 33.6 L
D) 37.1 L
E) 49.2 L
4. Calcium hydroxide, which reacts with carbon dioxide to form calcium carbonate.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(s)+\mathrm{CO}_{2}(g) \rightarrow \mathrm{CaCO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(g) \quad \Delta H=-69.1 \mathrm{~kJ}
$$

What is the enthalpy change if 1.6 mol of carbon dioxide is reacted?
A) $\quad-187 \mathrm{~kJ}$
D) $\quad-43 \mathrm{~kJ}$
B) $\quad-69 \mathrm{~kJ}$
E) None of these choices is correct.
C) $\quad-111 \mathrm{~kJ}$
5. A $235-\mathrm{g}$ sample of aluminum at $100.0^{\circ} \mathrm{C}$ is placed in 100.0 mL of water at $27.0^{\circ} \mathrm{C}$. What is the final temperature of the water? Assume that no heat is lost to or gained from the surroundings.
Specific heat capacity of aluminum $=0.900 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$, Specific heat capacity of water $=4.18 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$
A) $36.1^{\circ} \mathrm{C}$
B) $43.8^{\circ} \mathrm{C}$
C) $51.53^{\circ} \mathrm{C}$
D) $69.7^{\circ} \mathrm{C}$
E) $72.3^{\circ} \mathrm{C}$
6. Which one of the following is not a correct formation reaction? (products are correct)
A) $\quad \mathrm{H}_{2}(g)+\mathrm{O}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(/)$
B) $\quad 1 / 2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{Br}_{2}(g) \rightarrow \mathrm{HBr}(g)$
C) $\quad 6 \mathrm{C}($ graphite $)+6 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}(/)$
D) $\quad \mathrm{C}($ graphite $) \rightarrow \mathrm{C}($ diamond $)$
E) $\quad 2 \mathrm{C}($ graphite $)+2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(s)$

Part II: Answer the following questions clearly (2 points each)

1. Calculate the $\Delta H^{\circ}{ }_{r x n}$ for the combustion of propanol. $\Delta H^{\circ}\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}(/)\right]=-298.15 \mathrm{~kJ} / \mathrm{mol}$;

$$
\Delta H^{\circ}\left[\mathrm{CO}_{2}(g)\right]=-393.5 \mathrm{~kJ} / \mathrm{mol} ; \Delta H^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(g)\right]=-241.8 \mathrm{~kJ} / \mathrm{mol}
$$

2. A system expands against a constant pressure of 1.50 atm , from an initial volume of 1.00 L to a final volume of 10.0 L. Calculate the work (w) involved in this process, in kJ.
3. When 8.6 g of solid NaOH is dissolved in 100.00 g of water in a coffee cup calorimeter, all the reagents initially being at $27.0^{\circ} \mathrm{C}$. Calculate the final temperature of the solution obtained, given the following information (Heat capacity of NaOH solution $=4.18 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$:
$\mathrm{NaOH}(s) \rightarrow \mathrm{NaOH}(a q)$
$\Delta H^{\circ}=-43.0 \mathrm{~kJ}$
4. Use the ΔH° data given below to calculate ΔH° for the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g)
$$

Data:

	$\underline{\Delta H^{\circ}(\mathrm{kJ})}$
$\mathrm{C}_{2} \mathrm{H}_{6}(g)+3.5 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$	-1560
$\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$	-1411
$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$	-572

5. A 300 mL sample of a pure gas weighs 0.365 g and is at 655 torr and $27.0^{\circ} \mathrm{C}$.
a. What is the molar mass of the gas?
b. If the volume and temperature are kept constant while 0.300 g of the same gas are added to that already in the container, what will the new pressure be?

Part III: Answer the following statements by true or false (1 point each)

1. At a temperature of absolute zero, the volume of an ideal gas is zero.
2. From the postulates of kinetic-molecular theory, it follows that the molecules of all gases at a given temperature have the same average speed.
3. For an ideal gas, a plot of $P V / n R T$ versus P gives a straight line with a positive slope.
4. Standard heats (enthalpies) of formation of compounds, ΔH°, may be positive, zero or negative.
